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Galaxy Bias
Consider the distribution of matter and galaxies, smoothed on some scale R

δ(~x) =
ρ(~x) − ρ̄

ρ̄
δgal(~x) =

ngal(~x) − n̄gal

n̄gal

xxxxxxx Mass distribution xxxxxxxxxxxxxxx Galaxy distribution

• There is no good reason why galaxies should trace mass .

• Ratio is galaxy bias: b(~x) = δgal(~x)/δ(~x)

• One can distinguish various types of bias:

linear, deterministic: δgal = b δ

non-linear, deterministic: δgal = b(δ) δ

stochastic: δgal 6= 〈δgal|δ〉
• Real bias probably non-linear and stochastic

• Bias also depends on smoothing scale R

• Since δgal = δgal(L, M∗, ...) bias also depends on galaxy properties
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Handling Bias
• Bias is an imprint of galaxy formation , which is poorly understood

• Consequently, little progress constraining cosmology wit h LSS

Q: How can we constrain and quantify galaxy bias in a convenient way?



Handling Bias
• Bias is an imprint of galaxy formation , which is poorly understood

• Consequently, little progress constraining cosmology wit h LSS

Q: How can we constrain and quantify galaxy bias in a convenient way?

A: With Halo Model plus Halo Occupation Statistics!

The Halo Model describes CDM distribution in terms of halo building blocks ,
under assumption that every CDM particle resides in virialized halo

• On small scales: δ(~x) reflects density distribution of haloes ( NFW profiles )

• On large scales: δ(~x) reflects spatial distribution of haloes ( halo bias )

PARADIGM: All galaxies live in Cold Dark Matter Haloes.

galaxy bias = halo bias + halo occupation statistics



Halo Model Ingredients
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Halo Density Distributions: (Navarro, Frenk & White 1997)

ρ(r) = ρs

(r/rs)(1+r/rs)2

Halo Mass Function: (Press & Schechter 1974)

n(m) =
√

2
π

ρ̄
m2

∣∣ d ln σ
d ln m

∣∣ √
νe−ν/2

Halo Bias Function: (Kaiser 1994; Mo & White 1996)

b(m) ≡ δh(m)
δ

= n(m|δ)−n(m)
n(m) δ

= 1 + ν−1
δsc

δsc is critical spherical collapse overdensity, σ2(m) is mass variance , and ν = δ2
sc/σ2(m)



Statistical Halo Bias
Dark Matter Haloes are a biased tracer of the dark matter mass distribution!

Modulation causes statistical bias of peaks (haloes)



Dynamical Halo Bias

Halo bias has a statistical component plus a dynamical component

Growth of ‘modulation-perturbation’ causes increase in nu mber density of
haloes in overdense regions:

Consider a volume V with mass M , and let M = V ρ̄(1 + δ)

Here δ is the overdensity of V

At very early times this mass was in a volume V0 for which M = V0ρ̄

This basically reflects that δinit ≪ 1

⇒ V (1 + δ) = V0

This reflects the dynamical biasing in the linear regime.



Derivation of Halo Bias I
Define halo bias as b(m) = δh(m)/δ

Let N(m|M, V ) be the number of haloes of mass m in volume V .

The volume V has an overdensity δ so that M = V ρ̄(1 + δ) and initially
was associated with a volume V0 = V (1 + δ).

The overdensity in the number of haloes of mass m is

δh(m) = N(m|M,V )
n(m)V

− 1

Here n(m) is the (average) halo mass function.

To take account of the dynamical bias we write

N(m|M, V ) = n(m|M, V )V0 = n(m|M, V )V (1 + δ)

so that

δh(m) = n(m|M,V )
n(m)

(1 + δ) − 1



Derivation of Halo Bias II
PS ansatz: haloes are associates with regions with δ > δsc

Therefore, we can compute n(m|M, V ) = n(m|δ) by simply replacing
δsc with δsc − δ (Peak-Background split) .

Using that the halo bias is defined as b(m) = δh(m)/δ, one obtains that

b(m) = 1 + ν−1
δsc

where ν = ν(m) = δ2
sc/σ2(m)

Using that σ(m∗) ≡ δsc we see that

ffffffffffffffffffff b(m) > 1 if m > m∗ (biased)

ffffffffffffffffffff b(m) = 1 if m = m∗ (unbiased)

fff 1 − 1
δsc

< b(m) < 1 if m < m∗ (anti-biased)

Note that there is an absolute minimim to the halo bias.

Halo-Halo correlation function:

ξhh(r) ≡ 〈δh1
δh2

〉 = b(m1)b(m2)〈δ1δ2〉 = b(m1)b(m2)ξ(r)



Fine-Tuning of Halo Bias

Modifications to the derived halo bias have been made based on ellipsoidal
collapse corrections , and calibrations against numerical simulations .

Currently, this is one of the main sources of uncertainty in t he halo model .



Halo Occupation Statistics
How many galaxies, on average, per halo?

Halo Occupation Distribution: The HOD P (N |M) specifies the probability
that a halo of mass M contains N galaxies.

Of particular importance: first moment 〈N〉M =
∞∑

N=0

N P (N |M)

How are galaxies distributed (spatially & kinematically) within halo?

Central Galaxy : located at center of dark matter halo.

Satellite Galaxies: nsat(r) ∝ ρdm(r) ⇐⇒ σsat(r) = σdm(r)

Supported by distribution of sub-haloes in N -body simulations

What are physical properties of galaxies (luminosity, color, morphology)

One needs separate HOD for each sub-class of galaxies...

Introduce Conditional Luminosity Function , Φ(L|M) , which expresses
average number of galaxies with luminosity L that reside in halo of mass M



The Conditional Luminosity Function
The CLF Φ(L|M) is the direct link between halo mass function n(M) and
the galaxy luminosity function Φ(L):

Φ(L) =
∫ ∞
0

Φ(L|M) n(M) dM

The CLF contains a lot of important information, such as:

• halo occupation numbers as function of luminosity:

NM(L > L1) =
∫ ∞

L1

Φ(L|M) dL

• The average relation between light and mass :

〈L〉(M) =
∫ ∞
0

Φ(L|M) L dL

• The bias of galaxies as function of luminosity:

ξgg(r|L) = b2(L) ξdm(r)

b(L) = 1
Φ(L)

∫ ∞
0

Φ(L|M) b(M) n(M) dM

CLF is ideal statistical ‘tool’ to investigate Galaxy-Dark Matter Connection



Luminosity & Correlation Functions

ccccc • 2dFGRS: More luminous galaxies are more strongly clustered.

ccccc • c ΛCDM: More massive haloes are more strongly clustered.

More luminous galaxies reside in more massive haloes

REMINDER: Correlation length r0 defined by ξ(r0) = 1



The CLF Model
We assume that the CLF has the Schechter form:

Φ(L|M)dL = Φ̃∗

L̃∗

“

L
L̃∗

”α̃
exp(−L/L̃∗) dL

Here Φ̃∗ , L̃∗ and α̃ all depend on M.

Use Monte-Carlo Markov Chain to find model that best fits Φ(L) and r0(L).
Predict Ltot(M) and Lc(M)

(e.g., Yang et al. 2003; vdB et al. 2003a,b; vdB et al. 2005)

Alternative approach: split CLF in central and satellite components:

Φ(L|M) = Φc(L|M) + Φs(L|M)

Φc(L|M) =
Φ̃∗

c√
2πln(10) L σc

exp
h

− log(L/L̃c)2

2σ2
c

i

Φs(L|M) = Φ̃∗
s Lα̃ g(L − L̃c)

Here Φ̃∗
c , Φ̃∗

s , L̃c and α̃, all depend on M

Use direct observational constraints on Lc(M), Ltot(M) and α(M)

Predict Φ(L) and r0(L)

(e.g., Cooray & Milosavljevic 2005; Cooray 2005a,b; Cooray 2006)



The Relation between Light & Mass

vdB, Yang, Mo & Norberg, 2005, MNRAS, 356, 1233



The Relation between Light & Mass
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Cosmological Constraints

vdB, Mo & Yang, 2003, MNRAS, 345, 923

See also Tinker et al. 2005; Vale & Ostriker 2005



Constructing Mock Surveys
• Run numerical simulations : ΛCDM concordance cosmology (WMAP1)

Lbox = 100h−1 Mpc and 300h−1 Mpc with 5123 CDM particles each.

• Identify dark matter haloes with ( FOF algorithm.

• Populate haloes with galaxies using CLF.

• Stack boxes to create virtual universe and mimick observations
(magnitude limit, completeness, geometry, fiber collision s)

SGP

NGP

−1600 h  Mpc



HODs from Galaxy Groups

Halo Occupation Statistics can also be obtained directly from galaxy groups

Potential Problems: interlopers, (in)completeness, mass estimates

We developed new, iterative group finder, using an adaptive fi lter modeled
after halo virial properties Yang, Mo, vdB, Jing 2005, MNRAS, 356, 1293

• Calibrated & Optimized with Mock Galaxy Redshift Surveys

• Low interloper fraction ( <∼ 20%).

• High completeness of members ( >∼ 90%).

• Masses estimated from group luminosities.
More accurate than using velocity dispersion of members.

• Can also detect “groups” with single member
⊲ Large dynamic range ( 11.5 <∼ log[M ] <∼ 15).

Group finder has been applied to both the 2dFGRS (completed survey) and to
the SDSS (DR2, NYU-VAGC; Blanton et al. 2005)



The Relation between Light & Mass

YMBJ = Yang, Mo, vdB & Jing, 2005 vdB et al. 2006, in prep.

M05 = Mandelbaum et al. 2005



Galaxy Ecology
Many studies have investigated relation between various galaxy properties
(morphology / SFR / colour) and environment

(e.g., Dressler 1980; Balogh et al. 2004; Goto et al. 2003; Ho gg et al. 2004)

Environment estimated using galaxy overdensity (projected) to nth nearest
neighbour, Σn or using fixed, metric aperture, ΣR.

• Fraction of early types increases with density

• There is a characteristic density (∼ group-scale) below which
environment dependence vanishes

• Groups and Clusters reveal radial dependence :
late type fraction increases with radius

• No radial dependence in groups with M <∼ 1013.5h−1 M⊙

Danger: Physical meaning of Σn and ΣR depends on environment.

Physically more meaningful to investigate halo mass dependence of galaxy
properties. This requires galaxy group catalogues .

Important: Separate luminosity dependence from halo mass dependence .



Defining Galaxy Types

Data from NYU-VAGC (Blanton et al. 2005): SSFRs from Kauffma nn et al. (2003) and Brinchmann et al. (2004)



Halo Mass Dependence

The fractions of early and late type galaxies depend strongly on halo mass.

At fixed halo mass, there is virtually no luminosity dependence .

The mass dependence is smooth: there is no characteristic mass scale

The intermediate type fraction is independent of luminosity and mass.

(Weinmann, vdB, Yang & Mo, 2006)



Comparison with Semi-Analytical Model
Comparison of Group Occupation Statistics with Semi-Analytical Model of
Croton et al. 2006 . Includes ‘radio-mode’ AGN feedback.

• SAM matches global statistics of SDSS

• Luminosity function, bimodal color distribution, and over all blue fraction

• But what about statistics as function of halo mass?



Constraining Star Formation Truncation
To allow for fair comparison, we run our Group Finder over SAM.
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Satellites: red fraction too large: ⊲ strangulation too efficient as modelled

Centrals: fblue(L|M) wrong: ⊲ AGN feedback /dust modelling wrong

fblue(L, M) useful to constrain SF truncation mechanism



Satellite Kinematics in the 2dFGRS

• Mocks are used to optimize host-satellite selection criteria

• Using an iterative, adaptive selection criterion minimizes interlopers

• Application to 2dFGRS yields 12569 satellites & 8132 hosts

• Independent dynamical evidence to support WMAP1-CLF results

vdB, Norberg, Mo & Yang, 2004, MNRAS, 352, 1302

vdB, Yang, Mo & Norberg, 2005, MNRAS, 356, 1233



Problems for the WMAP3 Cosmology?

• In WMAP3 cosmology, haloes have lower mass-to-light ratios and are
less concentrated.

• WMAP3-CLF underpredicts satellite velocity dispersions by ∼ 30%

• But, Lcen(M) in good agreement with group-data....

• Central galaxies do not reside at rest at center of halo.

vdB et al. 2006, in preparation



Brightest Halo Galaxies

Paradigm: Brightest Galaxy in halo resides at rest at center

In order to test this Central Galaxy Paradigm , we compare the velocity of
central galaxy to the average velocity of the satellites. De fine

R = Ns(vc−v̄s)
σ̂s

with v̄s = 1
Ns

Ns∑
i=1

vi and σ̂s =

√
1

Ns−1

Ns∑
i=1

(vi − v̄s)2.

If Central Galaxy Paradigm is correct, P (R) follows a Student t-distribution
with Ns − 1 degrees of freedom

IMPORTANT: Applicability of this R-test depends strongly on ability
IMPORTANT: to find those galaxies that belong to same halo.

PROBLEM: Interlopers and incompleteness effects

SOLUTION: Use halo-based group finder and mock galaxy redshift surveys

DATA: Both 2dFGRS (Final Data Release) and SDSS (DR2, NYU-VAGC)



Evidence against Central Galaxy Paradigm

• We construct ten MGRSs , that only differ in the velocity bias (bvel) of
the brightest halo galaxy

• The P (R) of 2dFGRS is best reproduced by MGRS with bvel = 0.5

• The null-hypothesis of the Central Galaxy Paradigm is ruled out at
strong confidence: PKS = 1.5 × 10−6

• Best-fit value of bvel = 0.5 suggests that specific kinetic energy of
central galaxies is ∼ 25% of that of satellites

vdB et al. 2005, MNRAS, 361, 1203



Implications
Non−Relaxed Galaxy Non−Relaxed Halo

• Brightest halo galaxy either oscillates in relaxed halo, or resides at
potential minimum of non-relaxed halo.

• Strong gravitational lensing (external shear?)

• Distortions in disk galaxies (lopsidedness & bars)

• Satellite kinematics σsat =
√

1 + bvel σdm

with bvel = 〈|vcen|2〉/σsat



Large Scale Structure: Theory
Galaxy redshift surveys yield ξ(rp, π) with rp and π the pair separations
perpendicular and parallel to the line-of-sight.

redshift space CF: ξ(s) with s =
√

r2
p + π2

projected CF: wp(rp) =
∞∫

−∞
ξ(rp, π)dπ = 2

∞∫
rp

ξ(r) r dr√
r2−r2

p

Peculiar velocities cause ξ(rp, π)
to be anisotropic.

Consequently, ξ(s) 6= ξ(r).

In particular, there are two effects:

• Large Scales: Infall (“Kaiser Effect”)

• Small Scales: “Finger-of-God-effect”



Large Scale Structure: The 2dFGRS

Peacock et al 2001

Hawkins et al 2001



Mock versus 2dFGRS: round 1

Yang, Mo, Jing, vdB & Chu, 2004, MNRAS, 350, 1153



Mock versus 2dFGRS: round 2

Yang, Mo, Jing, vdB & Chu, 2004, MNRAS, 350, 1153



Large-Scale Environment Dependence
Inherent to CLF formalism is assumption that L depends only on M .

But Φ(L) has been shown to depend on large scale environment

Croton et al. 2005

Does this violate the implicit assumptions of the CLF formal ism?



Large-Scale Environment Dependence
2dFGRSCLF

Populate haloes in N -body simulations with galaxies using Φ(L|M)

Compute Φ(L) as function of environment and type as in Croton et al. (2005)

Because n(M) depends on environment , we reproduce observed trend

There is no environment dependence, only halo-mass depende nce



Theoretical Expectations

From the fact that

δh(m) ≡ n(m|δ)
n(m)

− 1 = b(m)δ

we obtain that

n(m|δ) = [1 + b(m)δ] n(m)

Since the halo bias b(m) is an increasing function of halo mass, the
abundance of more massive haloes is more strongly boosted in overdense
regions than that of less massive haloes

In other words; massive haloes live in overdense regions

If more massive haloes host more luminous galaxies, we thus e xpect that the
luminosity function of galaxies also depends on environmen t



Conclusions

Galaxy Bias = Halo Bias + Halo Occupation Statistics

Halo Occupation Statistics can be modeled & constrained using:

• Halo Occupation Distribution (HOD) P (N |M)

• Conditional Luminosity Function (CLF) Φ(L|M)

or it can be ‘measured’ directly using galaxy groups

Halo Model and/or Halo Occupation Statistics can:

• Constrain Cosmological Parameters

• Constrain Galaxy Formation

In the near future we will be able to

• Constrain galaxy bias as function of redshift

• Obtain independent constraints from galaxy-galaxy lensin g



Correlation Functions
Define the dimensionless density perturbation field: δ(~x) = ρ(~x)−ρ̄

ρ̄

For a Gaussian random field , the one-point probability function is:

P (δ)dδ = 1√
2πσ

exp
[
− δ2

2σ2

]
dδ

〈δ〉 =
∫

δP (δ)dδ = 0

〈δ2〉 =
∫

δ2P (δ)dδ = σ2

Define n-point probability function : Pn (δ1, δ2, · · ·, δn) dδ1 dδ2 · · · dδn

Gravity induces correlations between δi so that

Pn (δ1, δ2, · · ·, δn) 6=
n∏

i=1

P (δi)

Correlations are specified via n-point correlation function :

〈δ1δ2 · · · δn〉 =
∫

δ1δ2 · · · δnPn (δ1, δ2, · · ·, δn) dδ1 dδ2 · · · dδn

In particular, we will often use the two-point correlation function

ξ(x) = 〈δ1δ2〉 with x = |~x1 − ~x2|



Power Spectrum
It is useful to write δ(~x) as a Fourier series:

δ(~x) =
∑
~k

δ~kei~k·~x δ~k = 1
V

∫
δ(~x)e−i~k·~xd3~x

Note that δ~k are complex quantities: δ~k = |δ~k|eiθ~k

Decomposition in Fourier modes is preserved during linear evolution , so that

Pn

(
δ~k1

, δ~k2
, · · ·, δ~kn

)
=

n∏
i=1

P (δ~ki
)

Thus, statistical properties of δ(~x) completely specified by P (δ~k)

A Gaussian random field is completely specified by first two moments:

〈δ~k〉 = 0

〈|δ~k|2〉 = P (k) Power Spectrum

〈δ~kδ~p〉 = 0 (for k 6= p)

The power spectrum is Fourier Transform of two-point correlation function:

ξ(r) = 1
(2π)3

∫
P (k)ei~k·~rd3~k = 1

2π2

∫ ∞
0

P (k) sin kr
kr

k2dk



Mass Variance

Let δM(~x) be the density field δ(~x) smoothed (convolved) with a filter of

size Rf ∝ [M/ρ̄]
1/3.

Since convolution is multiplication in Fourier space, we ha ve that

δM(~x) =
∑
~k

δ~k ŴM(~k) ei~k·~x

with ŴM(~k) the FT of the filter function WM(~x).

The mass variance is simply

σ2(M) = 〈δ2
M〉 = 1

2π2

∫
P (k)Ŵ 2

M(k) k2dk

Note that σ2(M) → 0 if M → ∞.



Press-Schechter Formalism
In CDM universes, density perturbations grow, turn around from Hu bble
expansion, collapse, and virialize to form dark matter halo .

According to spherical collapse model the collapse occurs when

δlin = δsc ≃ 3
20

(12π)2/3 ≃ 1.686

δlin is linearly extrapolated density perturbation field

δsc is critical overdensity for spherical collapse.

Press-Schechter ansatz : if δlin,M(~x) > δsc then ~x is located
Press-Schechter ansatz: in a halo with mass > M .

The probability that ~x is in a halo of mass > M therefore is

P (δlin,M > δsc) = 1√
2πσ(M)

∞∫
δsc

exp
(
− δ2

2σ2(M)

)
dδ

The Halo Mass Function , then becomes

n(M)dM = ρ̄
M

dP
dM

dM =
√

2
π

ρ̄
M2

∣∣ d ln σ
d ln M

∣∣ √
νe−ν/2

where ν = δ2
sc/σ2(M), and a ‘fudge-factor’ 2 has been added.



Galactic Conformity

Late type ‘centrals’ have preferentially late type satellites, and vice versa.

Satellite galaxies ‘adjust’ themselves to properties of their central galaxy

Galactic Conformity present over large ranges in luminosity and halo mass.

(Weinmann, vdB, Yang & Mo, 2006)



Luminosity Dependence

(Weinmann, vdB, Yang & Mo, 2005)



Mass-Luminosity Dependence

(Weinmann, vdB, Yang & Mo, 2005)



Radial Dependence

(Weinmann, vdB, Yang & Mo, 2005)



Dependence on Group-centric Radius

As noticed before, the late type fraction of satellites increases with radius.
This trend is independent of halo mass !

Inconsistent with previous studies, but these included central galaxies.

Our results rule out group- and cluster-specific processes s uch as
ram-pressure stripping and harassment : nature rather than nurture !

(Weinmann, vdB, Yang & Mo, 2005)



Median Properties

(Weinmann, vdB, Yang & Mo, 2005)



Conditional Mass Funcion



Conditional Colour Funcion

(Weinmann, vdB, Yang & Mo, 2005)



Conditional Concentration Funcion

(Weinmann, vdB, Yang & Mo, 2005)



Blue Fraction as Function of Luminosity
In SAM virtually all satellites are red, contrary to SDSS, where the fraction of
red satellites decreases with luminosity.

In SAM, satellites stripped of hot gas halo immediately after accr etion

⊲ This strangulation is too efficient.



Blue Fraction as Function of Halo Mass
To allow for fair comparison, we run our Group Finder over SAM.

Problem with central galaxies: At fixed halo mass, blue fraction increases
with L in SAM, but decreases with L in SDSS.

⊲ Modelling of AGN feedback is not yet entirely correct



The Importance of Satellite Galaxies

Kinematics
• Satellites sample large radii ⇒ virial mass estimator

• Only few satellites per halo ⇒ Need to stack many host/satellite pairs

• Beware of Interlopers & Observational Biases

Abundances

• Halo Occupation Numbers ⇔ Conditional Luminosity Function
(Yang, Mo & van den Bosch 2003; van den Bosch, Yang & Mo 2003)

• Comparison with dark matter subhaloes
(Moore et al. 1999; Klypin et al. 1999; Vale & Ostriker 2004; K ravtsov et al. 2004)

Radial Distribution

• Dark Matter Subhaloes show spatial anti-bias
(Klypin et al. 1999; Ghigna et al. 2000; De Lucia et al. 2003; D iemand et al. 2004)

• Impact of tidal stripping, dynamical friction, harassment etc.
(Moore et al. 1998; Mayer et al. 2001; Taffoni et al. 2003)



Selecting hosts & satellites

other galaxy in blue volume.
At least f_h times brighter than any

In red volume and at least
f_s times fainter than host.

HOSTS

SATS

��������������

redshift

Projected
Distance

��

All previous studies used very conservative selection criteria: fh = 2,

fs = 4, ∆Vh = ∆Vs = 1000 km s−1, Rh = 2h−1 Mpc, and

Rs = 0.5h−1 Mpc. (McKay et al. 2002; Brainerd & Specian 2003; Prada et al. 2003)

Use Mock Galaxy Redshift Surveys , constructed from CLF to test selection
criteria.



Selecting hosts & satellites

N_h=1851
N_s=3876

N_h=7863
N_s=19099

N_s=16750
N_h=10483

f_s=1.0

f_s=1.0
R_h=2.0 chimp
R_s=0.5 chimp

f_h=1.0

f_h=2.0

R_h=2.0 chimp
R_s=0.5 chimp
dV_h=1000 km/s
dV_s=1000 km/s

f_s=4.0

f_h=1.0

dV_h=2000 km/s
dV_s=2000 km/s

assume sigma(L)
iterate



Measuring Satellite Kinematics



Interpreting Satellite Kinematics

Velocity dispersion of satellite galaxies follows from Jeans Equation :

σ2
sat(r) = 1

nsat(r)

∫ ∞
r

nsat(r
′) ∂Φ

∂r
(r′) dr′

The halo averaged expectation value:

〈σsat〉M = 4π
〈Nsat〉M

∫ rvir

0
nsat(r) σsat(r) r2 dr

Expectation value for the number of satellites follows from CLF:

〈Nsat〉M =
∫ ∞

L1

Φ(L|M) dL − 1

Scatter in relation between M and host luminosity Lh:

〈σsat〉(Lh) =
∫ ∞
0

P (M |Lh)〈σsat〉MdM

Stacking host-satellite pairs yields satellite-weighted mean :

〈σsat〉(Lh) =
R

∞

0
P (M |Lh) 〈σsat〉M 〈Nsat〉M dM
R

∞

0
P (M |Lh) 〈Nsat〉M dM

Accouting for flux-limited surveys :

〈σsat〉(Lh) = 1
V

∫ Ω

0
dΩ

∫ zmax

0
dz dV

dΩdz
〈σsat(Lh, z)〉

You need CLF to properly interpret satellite kinematics

back



Various Statistics of Galaxy Groups

Yang, Mo, vdB & Jing 2005, MNRAS, 356, 1293



The shape of the CLF

Using semi−analytical models
Zheng et al (2004) computed
the conditional baryonic
mass function (CMF).

For group−sized haloes
the CMF does not follow
a Schechter function.

Instead, the CMF is better
fit with a Gaussian (for the
central galaxies) plus a 
power−law describing the
satellite galaxies.

have a similar shape??
Does the true CLF 

Zheng et al. 2004 (astro−ph/0408564)



Direct Determination of CLF from Groups

We determined CLF
directly from groups
in 2dFGRS & mocks.

Group−sized haloes
have Schechter CLF.

Data is consistent
with Schechter CLF!

Mocks show similar
behavior, pointing
to an artefact due 
to mass estimator.

Galaxy−sized haloes
reveal Gaussian
peak of central
galaxies.

Yang, Mo, Jing & vdB, 2005, MNRAS, 358, 217



Probing Clustering of Dark Matter Haloes

Yang, Mo, vdB & Jing 2005, MNRAS, 357, 608

• The group-group correlation function directly reflects the halo-halo
correlation function (no issues with galaxy bias)

• Promising tool to constrain cosmological parameters



Radial Distribution of Satellite Galaxies

Consistent with no spatial bias , but only if Rgal ≃ 15h−1 kpcL
1/3
10



Concordance on Galactic Scales?
Ωm = 0.25 ± 0.04 σ8 = 0.78 ± 0.06

Cosmologies with lower Ωm and lower σ8 yield dark matter haloes that are
significantly less concentrated. This

• Alleviates problem with rotation curves of dwarf and LSB galaxies.

• Results in a TF zero-point that is ∼ 0.3 − 0.5 magnitudes brighter.



The Galaxy Phone Book

P (L, M) dL dM = 1
ρ̄L

n(M)Φ(L|M) L dL dM

P (M |L)dM = Φ(L|M) n(M) dM
Φ(L)

50% of light is produced in haloes M <∼ 2 × 1012h−1 M⊙.



Luminosity & Correlation Functions

• On average, early-type galaxies are more luminous and more strongly
clustered than late-type galaxies.

• In general, more luminous galaxies are more strongly cluste red.

REMINDER: Correlation length r0 defined by ξ(r0) = 1



The Concordance Cosmology
Ωm = 0.3; ΩΛ = 0.7, h = 0.7, σ8 = 0.9, n = 1.0

vdB, Yang & Mo, 2003, MNRAS, 340, 771

Concordance model fits Φ(L) and r0(L) of both early- and late-type galaxies.



Semi-Analytical Models I

(Kauffmann et al. 1999)

Poor agreement with CLF; but SAM doesn’t fit LF



Semi-Analytical Models II

(Benson et al. 2002)

Good agreement with SAMs that fit LF



Bias in Satellite Kinematics

back



The Galaxy Correlation Function

The two-point galaxy-galaxy correlation function can be split in a
1-halo and a 2-halo term

ξgg(r) = ξ1h
gg(r) + ξ2h

gg (r) = ξ1h
gg(r) + b̄2ξ2h

hh(r)

Here b̄ and ξ2h
hh(r) are computed as follows:

• b̄ = 1
n̄g

∫ ∞
0

n(M) 〈N(M)〉 b(M) dM (Berlind & Weinberg 2002)

• 〈N(M)〉 =
∫ L2

L1

Φ(L|M) dL

• ξ2h
hh(r; M1, M2) = b(M1) b(M2) ξ2h

dm(r) (Mo & White 1996)

• ξ2h
dm(r) = ξdm(r) − ξ1h

dm(r) (Ma & Fry 2000)

• ξdm(r) =
∫ ∞
0

∆2
nl(k) sin(kr)

kr
dk
k

NOTE: ξ1h
gg(r) can be ignored at large r



Derivation of Halo Bias II
According to PS formalism haloes are associates with regions with an
overdensity δ > δsc

Therefore, we can compute n(m, z|M, V ) = n(m, z|δ) by simply
replacing δsc with δsc − δ (Peak-Background split) .

Using a Taylor Series expansion to first order, we write that

n(m, z|δ) = n(m, z) + (δsc − δ − δsc)
(

∂n
∂δsc

)

δsc

which is sufficiently accurate as long as δ ≪ δsc.

Substitution in eq. for δh and only keeping terms to lowest order in δ yields

δh = δ

[
1 − 1

n

(
∂n

∂δsc

)

δsc

]



Derivation of Halo Bias III
According to the PS formalism the halo mass function is

n(m, z) =
√

2
π

ρ̄
m2 | d ln σ

d ln m
|√νe−ν/2

with ν = ν(m, z) = δ2
sc(z)/σ2(m)

If we define the halo bias as b(m, z) = δh/δ, one obtains that

b(m, z) = 1 + ν−1
δsc

The characteristic mass m∗ is defined by σ(m∗) = δsc.

This implies that ν(m∗) = 1, and thus that b(m∗) = 1

ffffffffffffffffffff b(m, z) > 1 if m > m∗ (biased)

ffffffffffffffffffff b(m, z) = 1 if m = m∗ (unbiased)

fff 1 − 1
δsc

< b(m, z) < 1 if m < m∗ (anti-biased)

Note that there is an absolute minimim to the halo bias.



Comparing 2dFGRS with SDSS



TestingR-statistic with MGRSs

• We construct ten MGRSs , that only differ in the velocity bias (bvel) of
the brightest halo galaxy

• Due to interlopers and incompleteness effects P (R) is significantly
broader than Student t-distribution , even for bvel = 0

• Different bvel result in significantly different P (R), allowing for a
determination of bvel despite interlopers and incompleteness.



Mass Dependence ofbvel

The velocity bias bvel is larger for more massive haloes, in agreement with a
hierarchical formation scenario .



Assumptions
• All dark matter is collapsed into dark matter haloes

• All galaxies live in dark matter haloes

• Central galaxy resides at rest at center of halo

• Satellite galaxies follow dark matter distribition (NFW pr ofile)

• P (Nsat|M) is Poissonian

• Halo bias: b = b(M) ; HOD: P (N) = P (N |M)

• Accuracy of b(M), n(M), ρ(r) and ξdm(r)

• Halo is a cow, and therefore spherical

• What can we learn from HOD as function of redshift?



Assembly Bias: does it matter?

Assume that halo bias b = b(M, c) with c the halo concentration , but that
HOD does not depend on halo concentration, i.e., 〈N〉 = 〈N〉(M)

bg = 1
ng

∫
dM 〈N〉(M)

∫
dc b(M, c) n(M, c)

However, when ignoring this assembly bias we compute

b′
g = 1

ng

∫
dM 〈N〉(M) b(M) n(M)

Since b(M) = 1
n(M)

∫
b(M, c)n(M, c)dc one has that

b′
g = 1

ng

∫
dM〈N〉(M)

∫
dc b(M, c) n(M, c) = bg

However, when 〈N〉 = 〈N〉(M, c) this is no longer true, and b′
g 6= bg

Important questions:

• What is b(M, c)?

• Do equal-mass haloes with different c have different galaxy properties?



Assembly Bias??
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